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Abstract
Biochar is a porous material recognized for its usefulness in improving soil quality and C 
sequestration in soils. This chapter presents the latest developments of biochar uses and appli-
cations in Europe. In particular, attention is focused on how European scientists are acting to 
aid decision makers to establish precise rules for assessment of biochar reliability and usability. 
This aim is achieved by the elaboration of a European Biochar Certificate containing a precise 
definition of what biochar is, the elucidation of the exact biochar chemical–physical charac-
teristics, the recommendation on the nature of the biomass feedstock to be used for biochar 
production, and guidelines on the pyrolysis conditions to be applied.
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Charcoal has been civilization’s basic material for thousands of years because 
of its applications in cooking, space heating, and the forging of metal tools 
(European Biochar Foundation, 2012). For centuries it has also been used as soil 
amendment, as animal bedding, as medicine, and as a feed additive. However, 
over the centuries, knowledge of these charcoal uses has been partly lost and only 
recently rediscovered. In fact, in the last decade, charcoal has become a major 
topic of research for many scientific groups. The main reason for such great atten-
tion derives from charcoal’s potential impact on slowing global warming and on 
its capacity to restore degraded soils (Ogawa et al., 2006; Laird, 2008; Mathews, 
2008; Lehmann and Joseph, 2009; Lehmann et al., 2009). Photosynthesis produces 
carbonaceous plant metabolites, which are decomposed back to CO2 when plant 
materials are allowed to decompose. However, if plant residues are pyrolyzed, up 
to 60% of the original plant C can be transformed into charcoal. Charcoal miner-
alization to CO2 is extremely slow when charcoal is applied to soils, providing a 
pathway for subtraction of CO2 from the global C cycle and reducing the concen-
tration of CO2 in the atmosphere (Lehmann and Joseph, 2009). The discovery of 
terra preta do indio, historical Māori gardens, and plaggen soils in Brazil, New Zea-
land, and Europe, respectively (Pape, 1970; Glaser et al., 2002; Calvelo Pereira et al., 
2014), has confirmed the importance of charcoal’s role in soil fertility. The native 
soils found in these regions suffer from low fertility: the soils of Amazon rain for-
est are usually thin, red, acidic, and infertile; those in southern New Zealand do 
not support the horticultural production possible in the warmer and more fertile 
volcanic areas found in the northern part of the country (Envirohistorynz, 2010); 
while many areas of The Netherlands, Germany, and Belgium are characterized 
by sandy soils with a relatively high content of easily weathered minerals (Pape, 
1970). Surprisingly, all the aforementioned areas were made more fertile by addi-
tion—in ancient times—of charcoal, thereby leading to the conclusion that such a 
material ameliorates soil properties and improves crop production.

Lehmann et al. (2006), Lehmann and Rondon (2006), and Lehmann and 
Joseph (2009) proposed that charcoal applied deliberately to soils should be 
referred to as biochar. Biochar is understood as a pulverized charcoal made from 
biomass for the purpose of enhancing fertility when mixed with soils. However, 
this definition appears weak because it is only oriented toward agronomic uses. 
It does not consider production methodologies, and it does not include the very 
important greenhouse gas reduction property. Moreover, Lehman and cowork-
ers’ definition did not account for the nature of the biomass to be used for biochar 
production. In fact, according to the aforementioned definition, any kind of con-
taminant-free biomass feedstock can be used to produce biochar regardless of 
the sustainability of its procurement. As an example, many plant biomass spe-
cies take a long time to grow. If not controlled by sustainability standards, their 
use for biochar production may pose serious problems for biodiversity protection, 
wildlife habitats, soil protection, and water production, thereby limiting the eco-
sustainability of biochar applications. In 2012, the European Biochar Foundation 
(EBC) proposed a more detailed definition of biochar: “Biochar is a charcoal-like 
substance that is pyrolysed from sustainable obtained biomass under controlled 
conditions and which is used for any purpose which does not involve its rapid 
mineralization to CO2” (EBC, 2012). According to this view on biochar, only fast 
growing plants, plant residues from certified forestry management, agricul-
tural residues, and organic wastes from urban areas may be used for biochar 
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production. This ensures compliance with the sustainability criteria outlined in 
a report prepared for the European Commission (Vis et al., 2008). However, to 
account for all the possible uses of biochar as a new material (e.g., biochar use in 
the paper and cellulose industry, biochar for advanced building materials, bio-
char electronics, 3-D printing, decontamination such as in water and sewage 
treatment, mining, air filtration, textile industry, and animal farming) (Schmidt 
and Wilson, 2014), the EBC (EBC, 2015) modified the aforementioned definition 
as follows: “biochar is a heterogeneous substance rich in aromatic carbon and 
minerals. It is produced by pyrolysis of sustainably obtained biomass under con-
trolled conditions with clean technology and it is used for any purpose that does 
not involve its rapid mineralization to CO2 and preserves its capacity to become 
eventually a soil amendment.” This newest biochar definition goes a decisive step 
beyond the limits of a solely precautionary principle related to the agronomical 
use of such a material (Bates, 2010). In fact, according to EBC, biochar must be con-
sidered not only as a soil amendment but also as a basic material for the synthesis 
of new products for the biobased economy such as those aforementioned.

It is noteworthy that opposition to biochar applications, because of the 
precautionary principle, rests on the assumption that studies on the long-term 
effects of biochar are lacking (Bates, 2010) and does not account for the world-
wide exponential growth of studies appearing in the last decade (Fig. 1). Among 
those studies, the majority show that biochar is quite stable in soils. This indicates 
that the possibility of groundwater contamination through leaching of biochar 
components coming from its degradation (e.g., polycyclic aromatic hydrocar-
bons, PCBs and dioxins) is either very limited or nonexistent on a long-term scale 
(Bruun et al., 2011b; 2014; Calvelo Pereira et al., 2011; Cross and Sohi, 2011; Jones 
et al., 2011; Luo et al., 2011; Wilson and Reed, 2012; Ameloot et al., 2013; Farrell et 
al., 2013; Mukome et al., 2013; Maestrini et al., 2014). Moreover, biochar shows a 
very good adsorption potential for hydrophobic materials (i.e., PAHs, and various 
hydrophobic herbicides and pesticides as well as dioxins) (Oleszczuk et al., 2012). 
For this reason, the USEPA suggests charcoal as the best available technology for 

Fig. 1. Exponential increment of the number of studies on biochar appearing in literature 
only from European researchers. Source: Scopus database (http://www.scopus.com/).

http://www.scopus.com/
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the treatment of hydrophobic contamination (Wilson and Reed, 2012). According 
to Hale et al. (2011) and Wilson and Reed (2012), the concern about possible dioxin 
content in biochars is overstated. On the one hand, the amount of dioxins in bio-
chars that have been analyzed to date was very low (Hale et al., 2011; Wilson and 
Reed, 2012). On the other hand, any dioxins present are strongly bound to biochar, 
thereby being unavailable for plant nutrition and to the food chain (Wilson and 
Reed, 2012).

Biochar Research In Europe
A map of the distribution of biochar research field trials across Europe updated in 
November 2014 from the European Biochar Research Network (eBRN) is reported 
in Fig. 2. All of the experiments are performed in fields (either open fields or 
greenhouses) to reveal the effect of biochar on soil fertility and crop production 
as well as to assess environmental impacts of biochar use, thereby sharpening 
a promising global change mitigation tool up to the stage where economically 
feasible application may begin. The map, coordinated by the eBRN team, shows 
experiments that are part of a European Cooperation in Science and Technology 
(COST) Action project designed to organize an integrated research program in 
a more systematic way than the previous widely fragmented research efforts in 
Europe (e.g., De Pasquale et al., 2012; Genesio et al., 2012; Kammann et al., 2012; 

Fig. 2. Map of the distribution of European biochar research projects as reported by 
the European Biochar Research Network (eBRN) at http://cost.european-biochar.org/
en/projects/map.

http://cost.european-biochar.org/en/projects/map
http://cost.european-biochar.org/en/projects/map
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Verheijen et al., 2013; Conte et al., 2013; Khan et al., 2013; Marchal et al., 2013; 
Swaine et al., 2013; Baiamonte et al., 2014; Bargmann et al., 2014; Cimò et al., 2014; 
Conte et al., 2014; Oleszczuk et al., 2014; Paz-Ferreiro et al., 2014; Rees et al., 2014).

The main research is focused on the following points:
•	 Biochar production parameters
•	 Biochar properties and evaluation of its effects following soil application
•	 Biochar’s potential to sequester C, enhance soil fertility, and reduce erosion
•	 Development of methodological approaches to estimate the economic 

effects and the CO2 mitigation potential of biochars applied to agricultural 
soils as part of a life-cycle assessment

•	 Application of meta-analysis tools to compare different biochar systems’ 
effects across Europe’s soil types, agroecosystems, and climate regimes

•	 Evaluation of biochar potential to replace soil substrates deriving from 
peat lands

Figure 2 has been used to account for the number of biochar field trials per 
European country as indicated in Fig. 3.

Leader countries on biochar research appear to be the northernmost regions. 
In fact, more than 70% of the biochar projects are realized in non-Mediterranean 
regions such as the UK, Germany, Finland, Norway, Denmark, Belgium, Estonia, 
Poland, Switzerland, Slovakia, and Austria; whereas, less than 30% are done in 
Mediterranean countries such as Greece, Italy, Spain, and France (Fig. 3). Israel 
and Libya, two Mediterranean non-European countries, are also involved in the 
biochar network (Fig. 2 and 3).

The northernmost-oriented distribution of biochar research initiatives 
is justified by the podzol nature of the northern soils (http://www.fao.org/
geonetwork/srv/en/metadata.show?id=14116). In fact, the general unfavorable 
chemical–physical soil properties (e.g., severe acidity, high Al levels, and cool cli-
mate) make the aforementioned soils unsuitable for arable cropping unless soil 

Fig. 3. Number of biochar projects per country as obtained by the visual inspection of 
the map reported in Fig. 2.

http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
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quality improvement is made by deep plowing and fertilization. The latter can be 
achieved with a rational application of biochar to soils as reported by, for exam-
ple, Awad et al. (2012), Abel et al. (2013), Hiemstra et al. (2013), Alburquerque et 
al. (2014), Oleszczuk et al. (2014), and Paz-Ferreiro et al. (2014). However, other 
studies revealed that biochar has the potential to improve fertility in soils from 
temperate and desert areas (Atkinson et al., 2010; Verheijen et al., 2010; Castaldi et 
al., 2011; Kammann et al., 2011; Baronti et al., 2014), thereby explaining the pres-
ence of Israel and Libya in the eBRN data (Fig. 2 and 3).

Interestingly, an additional reason explaining the wide attention of northern 
European countries for biochar applications is related to efficient urban waste man-
agement in those countries. The majority of the northernmost European regions 
divert urban wastes toward recycling and composting with great efficiency, whereas 
the effectiveness of the aforementioned waste transformations in the southernmost 
countries is still at a primary stage (Eurostat, 2015). Biomasses from urban wastes 
are among the main feedstocks used for energy production via several methodolo-
gies as indicated in literature (Murphy and McKeogh, 2004; Demirbas and Balat, 
2006; Montanarella and Lugato, 2013). As biochar represents an important by-prod-
uct from the energy production in many countries (such as Denmark, Austria, and 
Germany) at an industrial level (Sohi et al., 2010; Montanarella and Lugato, 2013), 
great concern arises from its possible disposal, thereby accounting for the impor-
tance that the northernmost European countries assume in biochar field trials.

Biochar Uses in Europe
Studies to date have dealt with many possible applications of biochar in many 
different fields. As already mentioned, biochar improves soil fertility (Awad et al., 
2012; Abel et al., 2013; Hiemstra et al., 2013; Alburquerque et al., 2014; Oleszczuk et 
al., 2014; Paz-Ferreiro et al., 2014), reduces greenhouse gas emissions (Augusten-
borg et al., 2012; Case et al., 2012; Dempster et al., 2012; Cayuela et al., 2013; Fungo et 
al., 2014; Nelissen et al., 2014), influences pollutant fates in the environment (Hag-
ner et al., 2013; Marchal et al., 2013; Agrafioti et al., 2014; Boutsika et al., 2014; Fellet 
et al., 2014; Rees et al., 2014), affects soil micro- and mesofauna activities (Ameloot 
et al., 2013; Anders et al., 2013; Prayogo et al., 2014; Doan et al., 2014; Domene et al., 
2014), and can be used as a reagent in the synthesis of new products in agricul-
ture and materials chemistry (Sahu et al., 2010; Hansen et al., 2012; Agrafioti et al., 
2013; Cao and Pawłowski, 2012, 2013; Di Lonardo et al., 2013; González et al., 2013; 
Troy et al., 2013; Plaza et al., 2014). Notwithstanding the number of studies show-
ing biochar potential in many different applications, there is no intra-European 
common policy about biochar uses in agriculture.

Under the European regulations, biochar is considered as a by-product of 
the energy industry (Montanarella and Lugato, 2013) and, as such, is classified as 
a waste. For this reason it is subjected to the European Directive on Waste (EU, 
2008), which hinders its possible agricultural use (Montanarella and Lugato, 2013). 
Although complex interpretation of the European regulations can address poten-
tial agricultural biochar applications (Montanarella and Lugato, 2013), the national 
regulations of almost all EU countries have not been implemented yet to include 
biochar as an agricultural resource. However, even though the national regulations 
are not designed for biochar, they include other waste materials (e.g., sewage sludge 
and amendments), thereby establishing threshold limits that may be adopted for 
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biochar regulations, though they differ from country to country. Very recently, 
Kammann and Schmidt (2014) stated that biochar direct soil applications have 
become legal in Switzerland (which is geographically in Europe, but not within the 
European Community) and Austria, whereas “in Germany, the use of ‘charcoal’ is 
legal […] without a clear definition of what ‘charcoal’ exactly is.” The authors also 
indicate that in many European countries, “the economic [biochar] use is largely 
restricted to the production of special horticultural substrates or nutrient-rich soil 
enhancers where the biochar has been preloaded with nutrients and has subse-
quently been aged by co-composting” (Kammann and Schmidt, 2014). As a general 
remark, Kammann and Schmidt report that, “the predominant biochar implemen-
tation pathway that ultimately delivers biochar to soils is currently the cascading 
use in animal husbandry. In particular, in Germany, Switzerland and Austria, the 
use of biochar in animal husbandry is implemented by small-to-medium scale 
farmers, and rapidly spreads by word-of-mouth recommendation, while scien-
tific studies are largely lacking. First statistics suggest that bad odor, ammonia 
and methane emissions can be reduced in animal barns, feed efficiency increases 
and animal health improves to the point where veterinary costs are considerably 
reduced. In animal husbandry, biochar is used as an ingredient in probiotic animal 
feed (“carbon feed”), as silage additive, bedding material, or manure and slurry 
conditioner (together with lactobacilli)” (Kammann and Schmidt, 2014).

The European Biochar Certificate
The main question arising from the discussion above is what the scientific world 
can do to aid decision makers to establish precise rules for assessment of bio-
char reliability and usability. The answer to this question is not only a precise 
definition of what biochar is, but also the elucidation of the exact biochar chem-
ical–physical characteristics, a recommendation on the nature of the biomass 
feedstock to be used for biochar production, and guidelines on the pyrolysis con-
ditions to be applied. Moreover, biochar application parameters (i.e., which kind 
of biochar can be applied, where, and how) must be also be developed to use the 
right biochar for any given agricultural practice.

The European Biochar Foundation elaborated the first guidelines in 2012 
with the aim to ensure control of biochar production and biochar quality based 
on well-researched, legally defensible, economically viable, and practically appli-
cable processes.

The entire set of questions posed above is incorporated in a certificate that is 
continuously updated to aid users and decision makers in the correct application 
of biochar and biochar-based products in agriculture and in all the industries 
where they are potentially useful (EBC, 2012). At the end of 2014, seven industrial 
biochar producers in four European countries (representing a total biochar pro-
duction of 9000 t yr−1) were EBC certified (EBC, 2013).

As stated in the first paragraph of the present chapter, the European Bio-
char Foundation suggested that biochar must be understood as a heterogeneous 
substance, rich in aromatic C and minerals that is produced by pyrolysis of sus-
tainable biomasses. The technology applied for biochar production must use 
controlled conditions and be clean. Moreover, biochar must not be applied for any 
purpose that involves its rapid mineralization to CO2, and its capacity to become 
a soil amendment should be preserved.
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Biochar definition implies the concept of sustainability, which can be inter-
preted at different levels according to the sector where it is applied (Brown et al., 
1987). In particular, sustainability is defined as the ability to manage “a resource 
for maximum continuing production, consistent with the maintenance of a con-
stantly renewable stock” as it deals with biological resources (Brown et al., 1987). 
In agriculture, sustainability is “the ability of a system to maintain productivity 
in spite of a major disturbance” (Brown et al., 1987), while in the energy field, the 
term is associated with the “transition from a global energy system based on con-
suming depletable fossil fuels to a sustainable system based on nondepletable fuels” 
(Brown et al., 1987).

Thermal decomposition of biological resources (i.e., biomasses) to produce 
energy (as an alternative to fossil fuels) can potentially produce biochar as a by-
product that can be applied in agriculture to improve soil quality (i.e., fertility). For 
this reason, we can argue that a biochar is sustainable when at least the parameters 
to contemporarily achieve biological, agricultural, and energy sustainability are 
accounted for. However, once applied to soils, biochar must also maintain nutrient, 
air, and water cycles, as well as a healthy environment. The latter are the conditions 
to achieve ecological sustainability (i.e., the conservation of the micro- and mac-
roenvironments where flora and fauna can survive). As a consequence, to consider 
biochar use as sustainable, it must fulfill also the conditions for the ecological sus-
tainability. Based on this holistic biochar sustainability approach, the only biomass 
feedstocks usable for biochar production are listed in Table 1. Table 2 lists the val-
ues of the main chemical parameters that are important to define biochar quality.

The total organic C (Corg) content must be >50% (w/w) of the dry mass. The 
large C content, together with the high chemical stability of biochar, accounts for 
the ability of such material to sequester C into soils, thereby preventing green-
house gas problems.

The H/Corg ratio has to be below 0.7. This is an indicator of the degree of carbon-
ization. The lower the H/Corg value, the higher the degree of polycondensation of 
the organic material, thereby increasing its environmental stability. Values exceed-
ing 0.7 are an indication of pyrolysis deficiencies or of nonpyrolytic chars like 
hydrochar or char from torrification processes (Schimmelpfennig and Glaser, 2012).

The O/Corg ratio (set to <0.4) is a further indication of the quality of the pyrolysis 
conditions. In fact, as the O/Corg ratio exceeds 0.4, oxidation prevails over pyrolysis, 
resulting in low quality biochar.

As for all the soil amendments, biochar must also be low in heavy metals and 
other organic contaminants. In fact, biochars containing amounts of organic and 
inorganic contaminants above the limits indicated in Table 2 risk pollution of soils. 
Polluted biochars make soils unavailable for food production, thereby reducing 
environmental resources available to future generations.

According to the biochar definition and the threshold values of the chemical 
indicators reported in Table 2, pyrolysis of biomass must be conducted according to 
the following suggestions (European Biochar Foundation, 2012):

1. Biomass pyrolysis must take place in an energy-autonomous process.
2. The composition of the pyrolyzed biomasses must not fluctuate more than 15%.
3. Complete production records must be kept, providing detailed descriptions 

and dates of any production problems or halts.
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4. The gases produced during pyrolysis must be trapped. They are not allowed 
to escape into the atmosphere.

5. The heat produced by the reactor must be recycled.

Table 1. Biomass feedstock to be used for biochar production. All the biomasses indi-
cated account for biological, agricultural, energy, and ecological sustainability criteria 
(see the text). The list is incomplete; it has been modified from the European Biochar 
Certificate guidelines (European Biochar Foundation [2012] http://www.european-bio-
char.org/en/download).

Origin Biomass feedstock

Local waste collection 
services with waste 
separation

Biodegradable waste, biodegradable waste with kitchen 
waste, biodegradable waste with kitchen waste and 
leftovers

Garden wastes Leaves, flowers, vegetables, roots, pruning from trees, 
vines and bushes, clippings from nature conservation 
measures, hay, grass

Agriculture and forestry Harvest leftovers, straw, used straw, husks and grain dust, 
grain, feedstuffs, pruning from biomass plantations grown 
for energy or biomass uses (renewable resources), pruning 
from trees, vines and bushes, seeds and plants, bark, 
chipping, wood, sawdust, wood shaving, wood wool

Kitchens and canteens Kitchen, canteen, restaurant leftovers

Vegetable productions Material from washing, cleaning, peeling, centrifuging 
and separation

Waterway maintenance 
(vegetable material)

Raked material, flotsam, fishing residues, harvested 
material, water plants

Animal by-products Hides and skins, bristles, feathers, hairs, bones, manure

Materials from food 
and packaging

Seasoning residues; residues from potatoes, corn, rice and 
starch production; residues from dairy processing; fruit 
and grain residues; marc; residues from beer production

Textiles Cellulose, cotton, vegetable fibers, hemp, wool leftovers 
and wool dust

Paper Paper fiber sludge

Biogas plants Fermentation residues

  
Table 2. Technical parameters for biochars as included in the European Biochar Cer-
tificate. The list is incomplete. The complete list is available at http://www.european-
biochar.org/en/download (European Biochar Foundation (2012).

Parameter

Carbon content  >50%

H/C  <0.7

O/C  <0.4

Heavy metal content Pb < 150 g Mg−1; Cd < 1.5 g Mg−1; Cu < 100 g Mg−1; Ni < 50 
g Mg−1; Hg < 1 g Mg−1; Zn < 400 g Mg−1; Cr < 90 g Mg−1

pH, bulk density, water 
and ash content

There are not fixed values. They must be measured and 
indicated

Polycyclic aromatic 
hydrocarbons (PAH)

PAH content (sum of the EPA 16 priority pollutants) must 
be under 12 mg kg−1

Polychlorinated-
biphenyls (PCB)

<0.2 mg kg−1

  

http://www.european-biochar.org/en/download
http://www.european-biochar.org/en/download
http://www.european-biochar.org/en/download
http://www.european-biochar.org/en/download
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Conclusions
This chapter is not intended to provide a complete review of the most recent 
studies on biochar done in Europe. It deals rather with the description of the 
European research directions, which are based on questions having general and 
worldwide interests.

The main aim of European researchers is to understand the role played by 
biochar in affecting soil characteristics for fertility and crop production enhance-
ment while preserving environmental resources for the future generations.

The chapter also summarizes the practical uses of biochar in Europe and 
provides evidence that a discrepancy between science and policy occurs. In fact, 
while scientists are accumulating data showing that biochar use in agriculture is 
safe, politicians, mainly following people’s unfounded fears, apply a general pre-
cautionary principle based on a hypothetical absence of scientific consensus on 
biochar risks. The latter is the reason why European countries act independently 
of each other concerning agricultural biochar applications.

At the moment, national (national biochar associations) and transnational 
(the European Biochar Foundation, the International Biochar Initiative, and the 
European Biochar Research Network) organizations are actively soliciting Euro-
pean governments to design special rules for biochar environmental applications. 
For this reason, the European Biochar Foundation has drawn guidelines (the 
European Biochar Certificate) to precisely define the purpose of biochar, its com-
position, and the correct procedures to be applied for its production and analysis.
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